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We present the results of an experimental and numerical study of the spin-up from rest 
to solid-body rotation of a fluid-filled torus. In separate experiments, the rotation rate 
of the container is suddenly increased to a fixed value and the final rotation rate is used 
to define a non-dimensionalized control parameter, C. At low values of C, the observed 
flows during the transient phase are axisymmetric and spin-up is achieved through 
viscous diffusion. This in turn is followed by significant secondary flow and the 
appearance of ‘fronts’ as C is increased. During the transient phase the fluid motion 
near the inner wall of the container is dynamically unstable according to Rayleigh‘s 
criterion. Thus at higher values of C wave-like structures break the axisymmetry, non- 
uniqueness in the details of the process is found and finally, an inner wall instability is 
observed directly. A plot of the spin-up time versus C shows breaks in the slope at 
transition points between each of the above dynamical regimes but the overall trend is 
found to be insensitive to the details of the fluid motion. Further elucidation of the 
dynamical processes is provided by a novel variant of the now standard phase-space 
reconstruction techniques. The results show a systematic splitting of the phase paths as 
C is increased. 

Finally, in the complementary numerical study, the time-dependent Navier-Stokes 
equations are solved for axisymmetric flows. Here, the flow is computed using a 
velocity-streamfunction-vorticity formulation in a two-dimensional plane with a 
velocity component normal to this plane. The quantitative and qualitative agreement 
between the numerical and experimental results is excellent for moderate values of the 
dynamical control parameter C. 

1. Introduction 
Laboratory studies of spin-up problems are usually concerned with hydrodynamic 

motions generated by a change in the rotation rate of the fluid’s containing vessel. In 
our case, we used experimental and numerical techniques to study the situation where 
a fluid is spun-up from rest when an axisymmetric container’s rotational speed is 
increased from zero to some closely controlled final value. The spin-up process can be 
considered as the transient between two well-defined dynamical states - those of rest 
and rigid-body rotation. The geometry is of a fluid-filled torus which is mounted as if 
it were a bicycle wheel spinning in the usual way on its central axis. When the final 
rotation rate is small it is found that the spin-up takes place through the diffusion of 
vorticity from the container walls. At high rotation rates, however, the fluid motion 
near the inner wall of the container during the transient phase will be hydrodynamically 
unstable according to the Rayleigh criterion as the fluid circulation will decrease 
outwards away from the axis of rotation. Therefore, one might expect to see 
instabilities develop in that region, above some critical rotation rate, which may then 
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grow and lead to a transient formation of turbulence. It might be anticipated that this 
feature will have a significant effect on the spin-up process since turbulence usually 
enhances the transport of vorticity. However, in the present case, the final state is solid- 
body rotation and thus the turbulence itself must decay. Thus there is a subtle interplay 
between the creation and decay of turbulent motion as will be discussed later. More 
importantly, it is in the range between these two extremes where most of the interesting 
behaviour takes place and the combination of numerical and experimental work to be 
presented below has revealed some novel dynamical processes. 

The majority of previous research on spin-up problems has been concerned with 
processes where the fluid motion is hydrodynamically stable and thus considerable 
analytical and experimental progress can be made. Greenspan & Howard (1963) 
analysed spin-up processes of this type using linear methods and identified three 
distinct phases. These are the formation of Ekman boundary layers, secondary flow 
within the body of the fluid and finally viscous decay of residual motion. Greenspan 
& Howard also used the linear theory to predict a characteristic spin-up time for two 
cylindrical geometries which are bounded in the first case by a flat disk and in the 
second by a conical section where both the disk and conic sections rotate with the 
cylinder walls. In each case, they confirmed the theoretical prediction by experiment. 
A great deal of the early work in this subject area is discussed in the book by Greenspan 
(1968) where details of the processes involved are also given. A more up to date and 
extensive review of work on spin-up processes is to be found in Benton & Clarke 
(1974). 

More recent work on the axisymmetric spin-up of fluid in cylinders has been carried 
out by Watkins & Hussey (1977). They considered both experimentally and numerically 
the spin-up from rest of a fluid in a closed cylindrical container and found good 
agreement between their numerical calculations and their experimental observations 
over a wide range of control parameters. Ibrani & Dwyer (1987) investigated the spin- 
up of flows in both cylindrical and spherical geometries using numerical techniques. In 
each case they found the presence of an inertial oscillation, which is in agreement with 
both linear and weakly nonlinear theory as outlined by Greenspan (1968). These 
inertial oscillations are also found in the present experimental and numerical results, 
which are discussed in detail in 54. 

Pertinent early numerical calculations on an unstable spin-up process were carried 
out by Pearson (1967) who studied the axisymmetric time-dependent flow between 
coaxial rotating spheres. The spheres were free to rotate independently about a 
common pole and all of the solutions were constrained to be not only axisymmetric but 
also symmetric about the equatorial plane. In one of the situations considered both 
spheres corotate with a given angular velocity. This velocity is suddenly increased and 
results in the spin-up of the contained fluid. Initially, when the rotation rate of the 
container is increased, fluid near the inner and outer spheres gains angular momentum 
through the action of viscosity in boundary layers. 

If we consider a region near the inner sphere in the above problem it can be seen that 
the rate of change of angular velocity with radial distance from the rotation axis is 
negative during the initial phase of the transient. Thus one might expect to find 
transient instabilities akin to those found between differentially rotating spheres if the 
velocity gradient is large enough. (An extensive review of the flow between rotating 
spheres is given by Yavorskaya et al. 1980.) This possibility was not discussed by 
Pearson but it might be expected to play a significant role in the spin-up process at large 
rotation rates as the instability may grow and lead to three-dimensional effects. We 
chose to study transient instabilities of the above type in a toroidal domain because it 
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not only permits systematic investigation but also combines aspects of symmetry with 
practicability. The geometry can be considered as a long pipe of circular cross-section 
which is bent into a circle so that its ends meet. This is thus a novel domain for spin- 
up problems since it is doubly connected. 

The transient flow in the torus has some features in common with pressure-driven 
flows in curved pipes - the so-called ‘Dean problem’ (Dean 1928). Indeed, theoretical 
analyses of coiled or curved pipe flows are often made using a toroidal flow domain 
which is then approximated experimentally by considering the case of small pitch, i.e. 
the depth through which the pipe is coiled. A review of flows in curved pipes is given 
by Berger, Talbot & Yao (1983) and here we will only comment on those features that 
are directly relevant to flow in toroidal domains. 

Early analytical work on pressure-driven flows in curved pipes was performed by 
Dean (1928) who showed that when the radius of the pipe is small compared with the 
radius of curvature (i.e. a narrow pipe loosely coiled), the system is characterized by 
a single controlling parameter which later came to be called the Dean number. The 
steady flow consists of an axial component along the pipe and a secondary circulation 
which is in the cross-sectional plane of the pipe. When the pipe is of circular cross- 
section the secondary flow consists of two counter-rotating vortices which are aligned 
so that the flow through the cross-section centre is directed away from the curvature 
axis. 

More recently, Munson (1976) has shown that in the case of a slowly oscillating 
torus, the sense of rotation of the secondary vortices is in the opposite direction to that 
for the pressure-driven flow of the Dean problem. This difference can be understood 
in terms of the centrifugal force which gives rise to the secondary flow. In the pressure- 
driven flow through a curved pipe the no-slip condition at the wall imposes a 
distribution of the axial velocity component within the cross-section of the pipe. This 
distribution peaks near the centre of the pipe and so the centrifugal force acting on the 
fluid at this point is greater than that acting on the fluid near the wall at a similar 
distance from the curvature axis. This imbalance leads to the observed circulation 
pattern. In the work of Munson (1976), the fluid with greater angular velocity is 
adjacent to the moving walls. Thus the imbalance in centrifugal force works in the 
opposite sense and the rotating vortices produce a stream in the cross-section centre 
towards the rotation axis. It is therefore to be expected that similar secondary flow 
effects to those observed by Munson will arise in the transient process studied here and 
since they will act to transport vorticity from the container walls then they will play a 
crucial role in the spin-up of the fluid. 

Further relevant work on time-dependent phenomena in curved pipe flows is to be 
found in Lyne (1970) who reported the presence of a four-vortex secondary flow in the 
high-frequency limit of a flow field driven by an applied oscillatory pressure gradient. 
His analysis consisted of a boundary-layer approximation for the flow near the wall 
which was matched to an inviscid core in the interior. The four-vortex state was also 
observed in experiments by Lyne and has subsequently been confirmed by Bertelsen & 
Thorsen (1982). This state has also been observed by Munson in the oscillating torus 
problem. In the present study, we also find a four-vortex flow in the numerical 
calculations of sharp transients but it has not been observed in the experiments since 
other complications arise in the relevant parameter ranges. 

Another area of great interest in curved pipe flows is that of suddenly accelerated 
flow. Cowley, Van Dommelen & Lam (1990) showed that impulsively started flow 
through a stationary curved pipe is a process where boundary-layer collision and 
unsteady separation can occur in the limit of high Dean number. Lam (1988) provides 
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a more extensive account of this phenomenon and also includes calculations of the flow 
due to the impulsive rotation of a curved pipe about its curvature axis. The situation 
in the latter case is best considered in the cross-sectional plane of the pipe and flow 
development proceeds as follows. The pipe is impulsively started and boundary layers 
begin to form. Fluid in these layers is forced outwards along the walls and the two 
streams collide at the point furthest from the rotational axis. The collision causes the 
boundary layer to grow rapidly in thickness and then to separate. At this point the 
calculations of Lam (1988) cease as a singularity is encountered. Unfortunately, we 
were not able to investigate these phenomena directly as it proved to be experimentally 
impossible to produce a sharp enough impulsive start. However, some of the results 
detailed below seem to support the presence of collision and growth processes. 

As discussed above, the spin-up process can be considered as the evolution of the 
flow from one uniquely defined dynamical state (rest) to another (solid-body rotation). 
In dynamical-systems parlance we could usefully consider this procedure as the 
evolution from one fixed point in phase space to another along a trajectory linking the 
two points. With this view it is interesting to inquire whether the path is always unique 
over the entire parameter range or whether there is any evidence for bifurcation 
phenomena. The investigation of such bifurcation phenomena has been the subject of 
intense research in recent years and a great deal of success has been achieved in the 
elucidation of complex bifurcation sequences for some fluid systems, e.g. Taylor- 
Couette flow. In these systems the interaction of qualitatively different types of 
bifurcations has been shown to give rise to non-trivial low-dimensional dynamical 
behaviour (including chaos) and enables a link to be formed between ideas of 
dynamical systems and the Navier-Stokes equations. A review of finite-dimensional 
dynamics in Taylor-Couette flow is given by Mullin (1993). 

We show in $4 that there is considerable merit in considering the spin-up process in 
terms of ideas from dynamical-systems theory using an adaptation of the method of 
Broomhead & King (1986) for reconstructing the trajectories from a measured velocity 
time series. We discuss in $3 a novel method for averaging the trajectories of many 
individual spin-up experiments so that a comparison can be made of the dynamics of 
many different runs, each of which is performed at the same parameter values. 

The rest of the paper is organized in the following way. We present in $2 the 
geometry and techniques used to numerically study the spin-up processes of the flow. 
In $3 we give details of the experimental methods and we describe an adaptation of the 
method of phase-space reconstruction from time series used to produce ‘averaged’ 
phase portraits, mentioned above. A comparison between experimental and numerical 
results is presented in $4, and finally some conclusions are given in 95. 

2. Numerical study 
Details of the geometry and coordinate system employed are described in this 

section. The equations of motion are then presented and the finite-difference numerical 
techniques used in the solution of the discretized equations are discussed. 

2.1. Geometry 
The coordinate system used is shown schematically in figure 1. The distance 00’ is 
denoted by R, and the plane angle q5 gives the position of 0’ on the circle of radius R. 
The radial direction r is defined by O‘P, and this line lies in the plane containing 0, 
which is orthogonal to that containing 4. The angular coordinate 6’ is defined by OO’P. 

In this coordinate system, a solid torus is defined by R, 0 < r < a (where a < R), 
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FIGURE 1. Toroidal coordinate system used in the numerical calculations. 

0 < 0 < 27c and 0 < $ < 27c. This gives a torus with major and minor radii R and 
a respectively. 

A point P is specified by ( r ,  0,$) and d P  is given by 

d P  = drr + r d06+ r* dq@ (1) 

where dr, do, and d$ indicate the changes in those quantities and r* is given by 

r* = R-rcos0. (2) 

Equations (1) and (2) define the scale factors for this coordinate system. These are used, 
together with their derivatives, to define the vector operators (e.g. V2 etc.) required for 
the Navier-Stokes equations (see for example Batchelor 1967, Appendix 2). 

The coordinate system as defined above contains a singularity at r = 0, in factors of 
the form l / r .  This singularity is avoided in the numerical approximation by ensuring 
that a grid point does not lie exactly on the point defined by r = 0. 

2.2. Equations, non-dimensionalization and boundary conditions 
The Navier-Stokes equations expressed in the above toroidal coordinate system are 
recast in a non-dimensional form by rescaling the variables and coordinates as follows : 

r = ar,, R = aR,, r* = a(R, - r ,  cos 8) = mi, 
0 = 0 , ,  $ =  $n, 

v = Pun, t = (a/P) tn ,  P = PP'pp,. 

Here a is taken as the radius of the 'pipe' cross-section. The scaling parameter /3 is 
taken to be the velocity in the $-direction at the point r = 0, i.e. P is equal to R 
multiplied by the rotation rate. The subscript n indicates the non-dimensional 
variables. With this rescaling, the Navier-Stokes equations have the following form : 

avn 1 
-+(v;V,)v, = -Vnp,+-Vv2,v, 
at, C (3) 

The velocity is also subject to the usual continuity constraint 

v,*v, = 0. 

In the following discussion, the subscript n will be dropped. Consequently, velocities, 
etc. will be assumed to be non-dimensional unless explicitly stated as otherwise. 

8 F L M  265 
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The parameter C is similar in form to a Reynolds number and is defined as 

c = ap/v, 

with v being the kinematic viscosity. Accordingly, the product of toroidal radii is 
implicit in this definition of C. In both the experiment and the numerical calculations 
the radius ratio was fixed at 7.8125: 1. 

The Reynolds number is usually defined as the single controlling parameter for a 
given flow. However, in the present problem there are two controlling parameters: the 
radius ratio and C. In the related problem of the flow through a curved pipe, the Dean 
number (Dean 1928) is defined as the single controlling parameter in the limit of large 
radius ratios (e.g. this would apply if R : a in the above coordinate definition is greater 
than 1OO:l). In considering the flow through curved ducts Winters (1987) showed 
that the critical Dean number for a bifurcation point is highly dependent on the radius 
ratio when the ratio is reduced below 50: 1. Therefore, the usual scaling arguments 
cannot be applied in the type of tightly curved tube used in the present case. However, 
it is convenient to define the control parameter C in this way to simplify the discussion 
of the results. 

The numerical iteration scheme, which is detailed below, uses a vector stream 
function, the vorticity a, and the velocity v .  The relevant equations are 

av 1 
at C 
- + ( v . V ) u  = -vp+-V", (4) 

am 1 
a t  C 
- + ( v . V ) o  = (o .V)v+-V2w,  

Implicit in the numerical method is the assumption that a vector stream function A 
exists as defined by (7), and this in turn, defines the u in (8). Thus v becomes a valid 
solution of the non-dimensionalized Navier-Stokes equations and satisfies the 
continuity constraint and boundary conditions. In addition, an axisymmetry in qi is 
imposed on the solution, i.e. all flow variables are independent of qi. This reduces the 
problem to calculations within ( r ,  0) - the two-dimensional cross-section - with the 
third, primary flow component normal to this plane. Thus, v, is independent of 
pressure, and v, and vo depend only on A,. In addition, A ,  is only dependent on o#. 

The boundary of the torus is defined by the circle r = a, and on this surface the 
velocity is fixed by the usual no-slip condition. Here the stream function is set to zero 
and the vorticity is determined by the velocity field and (5). Finally, the nature of the 
problem we consider eliminates any potential part in the decomposition of u in (8). 

2.3. Numerical solution 
Equations (4)-(8) are solved iteratively in order to calculate the transient flow 
produced when the initially stationary fluid is set in motion by the impulsive rotation 
of its toroidal container in the $-direction. Each iteration consists of five steps: 

1. equation (4) is used to time step the $-component of velocity; 
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2. the r- and B-components of vorticity are calculated using ( 5 ) ;  
3.  the $-component of vorticity is time stepped using (6); 
4. equation (7) is used to define the $-component of the stream function; 
5.  the r- and B-components of velocity are calculated using (8). 

The whole procedure is then iterated until solid-body rotation has been reached. 
Time stepping was performed using the standard alternating direction implicit 

technique (ADI). A practical method for implementing this technique is discussed by 
Press et al. (1988). The AD1 scheme can be considered as a generalization of the 
Crank-Nicholson method and is second-order accurate in space and time. The 
nonlinear terms (e.g. ( u s  0) v )  are treated in an explicit manner. 

The $-component of the stream function was calculated by solving (7), which is 
reduced to a Poisson relationship, where A ,  is only dependent on o,, when 
axisymmetry is assumed. We chose to solve this equation by using the standard 
technique of simultaneous over-relaxation which is also discussed by Press et al. (1988). 

In the physical process, the fluid is set in motion through the action of boundary 
layers in the initial stages of the spin-up. Greenspan (1968) provides an estimate for the 
thickness of the quasi-steady boundary layer in a spin-up process as (v/w)g. In the 
present arrangement, this is equivalent to (rR/C)a with rR = 2000 mm2 ( r  is 16 mm and 
R is 125 mm). 

This estimation provides an Ekman layer of thickness 44.7 mm for C = 1, 14.14 mm 
for C = 10, 4.47 mm for C = 100 and 1.41 mm for C = 1000 which is the upper limit 
of the range of validity of the numerical results. Thus the thinnest quasi-steady 
boundary layer to be considered is approximately 8 % of the tube radius and this must 
be properly resolved on the finite-difference grid for a good representation of the flow 
field. In practice, at the upper limit of C = 1000 there were three grid points across the 
boundary layer and this was found to be sufficient for repeatable and reliable results. 

The grid was constructed in the circular cross-section using the points of intersection 
of radial lines with a set of circles centred at r = 0. The increment in 0 between 
successive radii was linear whereas the gap between each circle was scaled in a 
nonlinear fashion to improve the resolution of the boundary layers as discussed above. 
The radius of each mesh point was set as follows. With n points spanning the interval 
0 + r and thus 2n points in total across the toroidal cross-section, then the radius of the 
ith point (i = 1,2,. . . , n) is (2r/(2n- l))((i-$). The factor was chosen by trial and 
error to provide an accumulation of points near the boundary whilst maintaining an 
adequate coverage of the central region. It was found that a more severe factor (e.g. 
$) or a stronger rescaling required additional grid points to give a proper representation 
of the interior flows. These additional grid points greatly increased the computational 
time and so made the solution procedure impractical. 

In addition to the condition of axisymmetry, the extra mirror symmetry in the two 
halves of the torus about the line 6' = 0, n: is imposed on the numerical solutions. Thus 
there is no flow allowed across this symmetry plane. This extra condition not only 
increases the computational speed by reducing the number of grid points but also it 
improves the stability of the numerical calculation. 

The accuracy of the numerical scheme was checked in two different ways. First, the 
analytical solution of rigid-body rotation was used as an initial condition for the finite- 
difference scheme and this solution was found to be both stable to small perturbations 
and unchanged by the iteration process. Secondly, grid refinement and time-step 
reduction tests were carried out in order to ascertain the convergence of solutions. 

In the experimental arrangement that will be discussed below, the impulsive spin-up 
of a torus was achieved by ramping the rotation speed from zero to its final value over 

8-2 



224 F. N .  Madden and T. Mullin 

a short time. This process was modelled in the numerical calculations using a linear 
ramp which was a close approximation to the actual response of the physical toroidal 
container used in the experiments. As will be seen below, good agreement is obtained 
between experimental and numerical results, which gives some support to this 
approximation. 

3. Experimental methods 
The experimental apparatus and measuring techniques used to study the spin-up 

process are detailed in 83.1. A discussion of a novel variant of a 'phase portrait' 
reconstruction technique is then presented. This method enables the representation of 
the dynamics as trajectories in phase space reconstructed from velocity time-series 
measurements taken at a single point in the flow. We have adapted this technique to 
produce averaged phase portraits from many different experimental runs taken at the 
same value of C which allows us to highlight correlations between experimental runs. 

3.1. Apparatus 

The torus was formed in two halves from solid blocks of Perspex by the precision 
machining of a ring of semicircular cross-section in each block. The two halves were 
then bolted together and sealed using a rubber O-ring. All dimensions of the torus are 
accurate to a tolerance of 0.1 mm. The torus was filled through two small holes which 
were subsequently sealed using screws which were machined to the appropriate length 
so as not to protrude into into the flow. 

0.1 mm for the radius of curvature and 16 f 0.1 mm 
for the cross-sectional radius, giving a radius ratio of 0.128. The torus was mounted so 
that it was free to rotate about its axis, as shown schematically in figure 2. As stated 
in the introduction, it is perhaps easiest to think of it rotating in a sense similar to that 
that of a bicycle wheel. A powerful servo-controlled d.c. motor was coupled to the axle 
via a reduction gearbox and toothed drive belt. The rotational speed of the torus was 
measured using an optical shaft encoder, which produed a sinusoidal wave of one 
hundred cycles per rotation of the axle. With this arrangement of driving motor, 
controller, reduction gearbox and shaft encoder the speed of the torus could be set 
under computer control to an accuracy of better than 0.1 %. 

It is not possible to produce a sharp or instantaneous change in the speed of the torus 
from rest to some final value with the experimental system over the entire parameter 
range. Therefore, a short nonlinear ramp was used for the first 0.8 s of every run so that 
the torus reached its final preselected rotation rate in this time for every value of C. The 
use of a nonlinear ramp provided a consistent and reproducible change in speed over 
the whole range of interest without either overspin or oscillation in the drive. It was 
achieved in practice by feeding a half-Gaussian into the motor speed controller for the 
first 0.8 s of each run. The duration of this nonlinear ramp is less than 10% of the 
viscous diffusion time in the system for any of the fluids used. The form of the ramp 
was determined empirically and details of the procedure for selecting this particular 
ramp can be found in Madden (1991). 

In order to cover as wide a range of C as possible we used a variety of fluids with 
differing viscosities to overcome the limited dynamic range of the motor and its 
controller. These were silicone oils of viscosity 24 mm2 s-l and 5.17 mm2 s-I and 
distilled water, which was used for the flow visualization photographs, with viscosity 
1.05 mm2 s-l. All of the viscosities were determined using a suspended level viscometer 
and were measured at a temperature of 18 "C. 

The two toroidal radii are 125 
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FIGURE 2. showing 

FIGURE 3. Schematic diagram shown the direction of the primary, 1. 
and secondary, 2, flow components. 

We show in figure 3 a schematic representation of the orientation of the primary (i.e. 
in the direction of rotation) and secondary (towards the axis of rotation) velocity 
components. These fluid velocities were measured separately in different experiments 
using the standard technique of laser Doppler velocimetry (LDV) (see for example 
Drain 1980). To make these measurements, the fluid was seeded with neutrally buoyant 
latex spheres of diameter 1 .O pm which served as scatterers for the incident laser light. 
The LDV technique was employed in the differential mode and a shift frequency was 
applied to one of the laser beams in order to reduce the additional noise in the 
secondary flow measurements caused by the relatively large component of primary 
velocity. 

In the results to be presented below, both velocity components were measured at the 
cross-section centre (v = 0). This position was chosen because of the ease and accuracy 
with which the optical arrangement could be aligned, given the symmetries of the torus. 
In addition, measurements taken at this point were found to be representative of the 
flow (i.e. there are no qualitative differences between measurements taken at this point 
and those taken at other points in the main bulk of the fluid). 

Each experimental run was performed in the following way. The torus was left 
stationary for at least five diffusion times of the system (for the two silicone oils used, 
the diffusion times were approximately 10 and 50 s). The computer recording of shaft 
encoder and LDV signals was started and then the torus was set spinning to its required 
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speed using the nonlinear ramp. The torus was then left spinning until the fluid attained 
the rigid-body rotational state. In the experiments where primary flow measurements 
were taken, a fractional spin-up time was calculated from the recorded signal. This 
fractional spin-up time is the elapsed period between the start of the nonlinear ramp 
and the instant when the fluid has reached a specified fraction - in this case 95 YO - of 
the appropriate rigid-body rotational velocity. 

The ramping of the input to the motor controller and the recording of signals were 
performed using a Masscomp computer, with its associated analog-to-digital and 
digital-to-analog converters. In addition to velocity measurements, flow visualization 
experiments were carried out. Distilled water was used which contained a flow 
visualization material (Mearlmaid AA natural pearl essence). The fluid was illuminated 
by a plane of light and photographs were taken of the spin-up process. The material 
reflects light in an anisotropic fashion which depends on the orientation of the particles 
in the flow. Thus regions of coherent orientations form light and dark patches which 
reveal the presence of fluid structures within the flow, see for example Sava8 (1985). 

3.2. Averaging reconstructed phase portraits 
As discussed in the introduction the spin-up process can be represented by a trajectory 
through ‘phase space’. This trajectory can be reconstructed from a velocity time-series 
measurement using the technique involving singular value decomposition (SVD) 
described by Broomhead & King (1986). The technique is, in essence, the method of 
delays proposed by Takens (1981) with additional analysis which provides an 
optimized orthonormal projection of trajectories. The method of delays and SVD can 
be used directly with transient data since the technique does not require stationarity 
of the time series. 

In the present experiment, the primary flow component starts at zero velocity and 
ends at a value corresponding to rigid-body rotation. These two points are therefore 
distinct in the reconstructed phase space. In addition, the overall change in primary 
velocity from rest to rigid rotation is large compared with the observed velocity 
fluctuations, which are associated with disordered fluid motion. Therefore, it is difficult 
to discern some of the delicate time-dependent features using measurements of this 
component. The fluctuating components are, however, easily discernible using the 
secondary flow component which starts and ends at zero. Phase portraits were 
therefore reconstructed using the secondary flow velocity measurements in order to 
study the nature of these velocity fluctuations. 

Clearly, each experimental run will furnish one portrait consisting of a single 
trajectory. In order to compare different runs at the same parameter values, a technique 
for averaging or combining phase portraits is required. The averaged phase-space 
portraits were produced by gluing together the time series from different runs to give 
one long time series. As discussed above the time series were measurements of the 
secondary flow velocity which in principle starts and finishes with zero value. The 
experimental measurements, however, contain extraneous experimental noise com- 
ponents which give a small offset in the measured velocity. In addition, the final value 
may also be non-zero because of the presence of a small amount of the primary flow 
component in the measurement. This effect arises because the LDV system measures 
the velocity component at a point in a plane. If the plane is not perfectly orthogonal 
to the primary flow direction, then some component of this flow will inevitably be 
present in the measurement. Thus, when time series from individual experiments are 
glued together the cumulative effect of these extraneous events results in a discontinuity 
between the end of one series and the start of the next. This introduces spurious steps 
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into the phase portraits which arise from the trajectories joining the end of one run with 
the start of the next. However, the number of points added is less than 5 % of the total 
and their effect is thus small. Indeed, it is found that there is no qualitative difference 
between the portrait for one run and the averaged set for one hundred when the 
dynamics of the flow are repeatable. 

4. Results 
The experimental and numerical results presented in this section describe the changes 

in the spin-up process of the fluid which arise from increasing the final rotation rate of 
its toroidal container. The results are therefore discussed with reference to the non- 
dimensionalized form of the control parameter C. We first present in $4.1 an overview 
of the experimental and numerical results for the entire range of C covered. It is 
observed that the qualitative nature of the results is the same over ranges of C with 
definite end points to each span. Thus the ensuing discussion is arranged in order of 
increasing C and each type of behaviour is described in sequence. In $4.2 the value of 
Cis generally less than 1000, the fluid motion is axisymmetric and it is found that there 
is good agreement between the numerical and experimental results. Over the next range 
of C, discussed in $4.3, three-dimensional transient wave phenomena are observed. 
Here values of the parameter C are greater than 1000 and differences between the 
experimental and numerical results begin to appear as the limits of the theoretical 
approximations are reached. Therefore, greater emphasis is placed on the experimental 
results in this regime. Finally, the waves are found to grow and break with further 
increase in C so that turbulence now forms part of the spin-up process. 

The experimental results are presented in several forms. These are time series 
measurements, graphs of fractional spin-up time versus C, reconstructed phase 
portraits and flow visualization photographs. The numerical results consist of 
fractional spin-up times, secondary flow distributions and velocity time-series 
measurements for one of the central grid points. A combination of all of the results is 
used to demonstrate the sequence of dynamical fluid states that appear as the final 
rotational rate is increased and that arise because of the hydrodynamic instabilities in 
the spin-up process of the fluid. 

4.1. The trend in fractional spin-up time as a function of C 
We begin the discussion of the results by considering the fractional spin-up time of the 
flow over the entire range of C studied. A log-log graph of this quantity is shown 
plotted against C in figure 4. As defined in $3.1, the non-dimensionalized fractional 
spin-up time is the elapsed period between setting the toroidal container in motion and 
the instant when the primary fluid velocity has reached 95% of its solid-body 
rotational value. We choose to use the non-dimensionalized time discussed in $2.2 to 
ease comparison between the theoretical and experimental results. The numerically 
obtained results are only valid for a limited span of C but we have linearly extrapolated 
them over the entire range to highlight the departure of the experimental results from 
the numerical results. This extrapolation is shown by the solid line CD. 

In the range of C between 10 and approximately 30 (logC between 1 and 1.5) the 
spin-up process is dominated by viscous diffusion of vorticity from the walls. Further, 
if we assume that secondary flow effects due to curvature are negligible in this limit of 
small C then we may approximate the situation by considering it to be equivalent to 
the starting motion in a long straight pipe which is suddenly accelerated from rest. 
Straightforward adaptation of a model problem given in chapter 4.3 of Batchelor 
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FIGURE 4. The combined theoretical, numerical and experimental results showing the logarithm of the 
non-dimensionalized spin-up time as a function of C. AB is obtained from the analytical result for 
the start-up flow of a long straight pipe and CD is the best-fit line through the numerical results in 
the upper range of C. 

(1967) shows that the scaling of the ensuing solution will proceed as r2/2vt. Thus an 
analytical estimate of the spin-up time can be obtained and since a similarity solution 
exists then this will be independent of C. This is shown as the line AB in figure 4 which 
has a slope of 1 since we have used the non-dimensionalized time to construct this 
figure. It can be seen that there is excellent agreement between theoretical, numerical 
and experimental results up to the point labelled C in figure 4. 

In the range of C between 30 and 250 (logC between 1.5 and 2.4) the spin-up time 
becomes dependent on C as secondary flow effects become important. Now there is 
very good agreement between the numerical and experimental results which is an 
indicator that the flow remains axisymmetric throughout the spin-up process. The line 
CD is a straight-line fit to the numerical results at the upper end of this range of C and 
it has a slope of 0.647 showing that secondary flow is a significant factor in enhancing 
the spin-up process. 

It may be seen in figure 4 that there is a difference between the experimental and 
numerical results above C z 250 (log C z 2.4). This is because three-dimensional 
effects become important and these are not included in the numerical approximation. 
However, the experimental results scale in proportion to log C and the least-squares 
fitted line has a slope of 0.641. Thus it can be seen that the complicated motions which 
arise in this range of C and which will be discussed in detail below do not have a 
significant effect on the spin-up time. This is an interesting and perhaps surprising 
result since complicated motions including transient turbulence can form part of the 
process over a large part of this range of C. Since turbulence enhances the transport 
of vorticity one might expect its presence to have a significant effect on the spin-up 
time. However, the final state is that of solid-body rotation and so the turbulence must 
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FIGURE 5. Log-log plot of the experimentally determined dimensional spin-up time plotted as a 
function of C for the lower range of C studied. Note how it is independent of C up to log 
C z  1.5. 

also decay. Thus one conclusion which may be drawn from the present results is that 
the two effects approximately cancel each other out. 

4.2. Experimental and numerical results for  C less than 1000 
At small values of C the spin-up time is independent of C as discussed in $4.1 above. 
Here, the spin-up process is dominated by viscous diffusion of vorticity from the walls 
of the torus, and the flow is almost entirely in the primary, rotational direction with 
little or no secondary flow. The independence of the spin up time of C is demonstrated 
by the horizontal portion of figure 5 between C values of 10 and 30 (log C values of 1 
and 1 S). Here we have chosen to plot the dimensional time since the independence of 
this measure of C is more immediately evident. We also show for comparison the 
analytical estimate of the spin-up time which is denoted by the horizontal line AB. In 
the region where C is approximately 10, the signal-to-noise ratio is poor in the 
experimental results owing to problems with the LDV technique when measuring small 
velocity components. Consequently there are large errors associated with the 
experimental estimates of the spin-up time but on average there is good agreement 
between calculation and experiment. 

When C is increased above this linear range, secondary flow effects become 
important, and for C greater than 30 (log C z 1 S), the spin-up time is no longer 
independent of C. The transport of vorticity from the boundary is now enhanced by 
the action of secondary flow which reduces the fractional spin-up time to a value below 
that which would be achieved by viscous diffusion alone. The growth of the secondary 
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FIGURE 6. Plots of the measured secondary flow component as a function of time. Each plot is 
for a different value of C as labelled, and each line is 5 s of data. 
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FIGURE 7. Plots of the measured secondary flow component as a function of time. Each plot is for 
a different value of C as labelled and each line is 5 s of data. The development of an inertial oscillation 
is clear. 

flow component is shown clearly in figure 6, in which a sequence of experimental 
velocity time series for a range of C is shown. The parameter C is varied from 10 at the 
bottom to 232 at the top, which covers the range shown on the x-axis of figure 5. It 
should be noted that the peak amplitude for the secondary flow component is less than 
10 YO of the primary component in this regime. 

Next we show in figure 7 the observed sequence of secondary flow time series when 
C ranges from 209 to 1079. It can be seen that the secondary flow develops an 
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FIGURE 8. Detailed comparison of the experimental and numerical results for non-dimensionalized 
spin-up time shown on a log-log scale: @, 0.24 Cst Silicone oil; A, 0.0517 Cst Silicone oil; A, 
numerical (with cubic fit). 

FIGURE 9. Calculated secondary flow pattern which is typical of that found during the spin-up 
process. Here C = 75 and elapsed time is 2.3 s after start. 



232 F. N .  Madden and T. Mullin 

0.10 

0.08 

0.06 

0.04 

0.02 

0 1.6 3.2 4.8 6.4 8.0 

0 1.6 3.2 4.8 6.4 8.0 
Time 

FIGURE 10. Calculated velocity time series for C = 300: (a) the secondary flow component, and 
(b) the primary. The duration of the record is 8 s. 

oscillation which is at twice the rotational frequency. Inertial oscillations of this type 
are well-known phenomena in spin-up problems, and are discussed by Greenspan 
(1968). A comparison between the experimentally and numerically determined non- 
dimensionalized spin-up times for this range of C is presented in figure 8. This figure 
has been constructed from two sets of experimental data, each with a fluid of different 
viscosity, and the numerically calculated set. In order to allow a direct comparison the 
spin-up time has been non-dimensionalized using the scaling parameters described in 
$2. The independence of fractional spin-up time of C is therefore indicated in this figure 
by the line of slope 1 which occurs for log C less than 1.5 (C z 30). The agreement 
between experimental and numerical values is generally very good and the two sets of 
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FIGURE 11. Calculated velocity time series for C = 1500: (a) the secondary flow component, and 
(b) the primary. Note the reversal in the secondary flow component (a). 

results are coincident for log C less than 2.5 (C z 300). However, for values of log C 
greater than 2.5 there are differences between the two which develop with increasing C 
and which become approximately 3% of the spin-up time for each value of C. To 
highlight this difference we have fitted lines to the experimental and numerical data for 
this region, using standard least-squares techniques, and it is found that the gradients 
differ by more than 6%, indicating a divergence of the numerical and experimental 
spin-up times. As discussed in $4.1 this divergence is probably due to the appearance 
of three-dimensional phenomena in the experiment as well as the lack of numerical 
resolution of the boundary layers. 
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FIGURE 12. Flow visualization photograph taken 2 s after start with C = 1257. 

We now show in figure 9 a typical numerically determined secondary flow pattern 
for the above range of C. Here the axis of rotation is to the right of the page and fluid 
moves away from this axis when adjacent to the wall and towards it in the centre of 
the torus. We have represented the flow by arrows centred at each grid point and their 
size and orientation indicate the magnitude and direction of the velocity at that grid 
point. The two counter-rotating vortices shown in this figure are similar to those found 
in pressure-driven flow through curved pipes but as discussed in the introduction their 
rotation is in the opposite sense here. This secondary flow pattern is only a transient 
phase and it will eventually be removed by the action of viscosity as solid-body rotation 
is achieved. 

The inertial oscillations which are observed in the experiment and illustrated in the 
time series of figure 7 are also reproduced by the numerical calculations. We show in 
figure 10 a numerically derived time series for C = 300. Here both primary and 
secondary flow velocities at one of the central grid points are portrayed as a function 
of time. The vertical scale is the same in each picture and it has been normalized by the 
maximum value of the primary velocity in the centre of the torus cross-section. Hence 
the primary flow component at the cross-section centre changes from 0 to 1 during 
spin-up. The time series shown has a total length of 8 s and in this time both the 
secondary and primary flows reach their final values-zero and 1 respectively. The 
inertial oscillations which were discussed above with reference to figure 7 are clearly 
visible in the secondary flow time series of figure 10. 

As the value of C is increased beyond the upper limit of the range of figure 5 ,  the 
numerically determined spin-up times and the experimental values diverge as discussed 
above. At the same time, the numerical solution develops a transient four-vortex 
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FIGURE 13. Flow visualization photograph taken 2 s after start with C = 2513 

secondary flow. Here, not only are there two counter-rotating vortices similar to those 
of figure 9, but in addition, a smaller second vortex pair exists near the centre of the 
cross-section. 

A velocity time series generated from the numerical integrations for this four-vortex 
solution is portrayed in figure 11. The secondary flow, which is once again shown 
overlaid on the primary flow with a shifted and magnified scale, now contains evidence 
for flow reversal as well as displaying the inertial oscillations discussed above. The 
four-vortex state occurs at the minimum (i.e. most negative) value for this secondary 
flow. As discussed in the introduction four-vortex states have been calculated and 
observed for oscillating flows in curved pipes in the high-frequency limit by Lyne 
(1970). However, Lam (1988) has shown that the flow that arises in an impulsively 
started pipe is susceptible to boundary-layer collision and separation. The collision and 
separation processes may result in the four-vortex state being unstable and thus it is not 
observed in the experiment. Further evidence for these instabilities will be presented in 
the next section. 

4.3. Experimental results for C greater than 1000 
The photograph shown in figure 12 was taken with an exposure time of 1/30th of a 
second so that it is effectively an ‘instantaneous’ flow visualization realization of the 
flow field at C = 1257 after an elapsed time from the start-up of approximately 2 s. The 
fluid is illuminated by a plane of light along the centreline of the cross-section 
perpendicular to the axis of rotation. This axis is to the right of the page and the torus 
would then be rotating in the plane of the paper in this geometry. The flow field shown 
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FIGURE 14. Reconstructed phase portrait for C = 1215. Here the time series from 50 independent runs 
have been used in the construction. The data have been projected onto the three principal singular 
vectors calculated by the SVD of the constructed trajectory points whose coordinates are time- 
delayed values of velocity. 

in the photograph is representative of the spin-up process for values of C between 
approximately 1000 and 2500. The dark horizontal band is a shadow cast by a 
mounting bolt outside the fluid-filled toroidal cavity. Inspection of the photograph 
reveals a sharp interface between rotating fluid on the left and stationary fluid on the 
right. This front is axisymmetric at all times and progresses across the torus from left 
to right with increasing experimental run time. These sharp fronts are beyond the 
resolution of the numerical calculations and may be related with the boundary-layer 
collision processes discussed by Cowley et aE. (1990) and Lam (1988). 

When C is increased further, the interface shown in figure 12 becomes unstable and 
loses its axisymmetry. This breaking of the axisymmetry was observed to occur for C 
values approximately equal to 2500 using flow visualization. A typical flow 
visualization photograph for this regime is shown in figure 13 where C = 2513. As in 
figure 12, there is a boundary between stationary and rotating fluid. However, it is 
evident in the photograph that this front is no longer axisymmetric as there are several 
dark streaks or waves along its leading edge. We believe that these waves originate at 
the centrifugally unstable region near the inner wall and are then convected round the 
outer wall of the torus by the secondary flow field. They then travel back towards the 
inner wall across the middle of the tube and, since they are growing during their 
passage, first become visible on the leading edge of the front. 

We now turn to a dynamical-systems representation of the flow dynamics to explore 
the three-dimensional instabilities described above in more detail. The velocity time 
series obtained from the LDV system can be used to construct individual trajectories 
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FIGURE 15. Reconstructed phase portrait for C = 3403. Here the time series from 100 independent 
runs have been used in the construction. The trajectories start at the point labelled F, remain together 
initially and then diverge wildly around the region labelled G before they converge in the nearly fully 
spun-up state labelled H. The data have been projected onto the three principal singular vectors 
calculated by the SVD of the constructed trajectory points whose coordinates are time delayed values 
of velocity. 

through a reconstructed phase space using the techniques described in $3.2. In this 
representation each trajectory corresponds to an individual spin-up process. Thus an 
accumulation of many such runs will give rise to a phase-portrait representation of the 
dynamics involved in the spin-up process. Examples of these phase portraits are given 
in figures 14 and 15. The three axes onto which we have projected the data are velocity 
and two time-delayed values of velocity for different but constant time delays. The 
projected data have then been processed using the singular systems approach discussed 
by Broomhead & King (1986). 

The phase portrait in figure 14 is formed from fifty separate runs at a value of C set 
equal to 1215. It can be seen that, despite the fact that the fluid motion is non-trivial, 
the phase trajectory is well-defined, i.e. the paths stay close together at all times and are 
only separated by experimental noise. However, non-uniqueness in the spin-up path is 
demonstrated in the phase portrait shown in figure 15 which has been constructed from 
100 separate runs at C = 3403. The portion marked F’ is caused by the spurious points 
introduced in connecting the end of one run with the start of the next, as discussed in 
$3.2. The time evolution of the trajectories proceeds as follows. All the trajectories start 
at the point labelled F and move outwards through G, before spiralling into the point 
H. Initially the trajectories progress closely together but then their paths diverge before 
converging once more to the final state. Thus the trajectories follow different paths 
through the reconstructed phase space for the same initial conditions. 

The non-uniqueness discussed above can also be seen in the time-series plots of the 
secondary flow as shown in figure 16. This feature has the form of a disturbance which 
grows in amplitude and duration as C is increased from the transition value of 
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FIGURE 16. Velocity time series plots for C = 3038 which show the first signs of non-uniqueness. 
Each record is 6 s long and were obtained from five repeat runs of the experiment. 

approximately 2650. The five time series plots for C = 3038 given in figure 16 show a 
variety of these disturbances which include some sharp singular-type events. Next, the 
flow visualization photograph of figure 17 shows the result of nonlinear developments 
of the waves on the front when C is increased to 3770. Here, it can be seen that the 
original axisymmetric front of figure 12 has now broken up and is highly irregular. 

A new phenomenon appears with yet further increase in the value of C. This can best 
be seen by inspection of figure 18 which contains ten secondary flow time series with 
C = 5345. Now there is a second distinct disturbance which arises after the initial one 
discussed above has decayed. This second disturbance is observed above C = 4800, and 
it is associated with the appearance of a wave on the front which develops from the 
inner wall. The initial formation of this new front is portrayed in the sequence of flow 
visualization photographs of figure 19(a-d). The development of a wave on the front 
near the inner wall is clearly visible in the photographs. This wave subsequently grows 
and then breaks down into highly disordered flow. This new phenomenon is associated 
with a kink in the plot of spin-up times versus C at C z 5000 (log C = 3.7). We show 
a magnified version of this particular feature in figure 20 which is constructed from 
approximately 600 individual experimental runs. A similar kink is observed in the plot 
of spin-up time versus C for the transition between axisymmetric and non-axisymmetric 
flows. In both cases however the kinks appear as small disturbances in the overall 
trend, which indicates that the spin-up time is an insensitive measure of the dynamical- 
fluid state as can be seen by inspection of figure 4. 

Finally, the time series plots shown in figure 21 which were taken at C = 7163 
indicates that, as C is increased, the initial and secondary disturbances merge and the 
scale of the combined disturbance grows. In addition, the phase-space projection for 
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FIGURE 17. Flow visualization photograph taken with C = 3770 showing the final stages of the 
break-up of the front. 
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FIGURE 18. Ten velocity time series for the radial flow component taken at C = 5354 chosen to 
highlight the unrepeatability of the flow dynamics in the spin-up process at high values of C. 
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FIGURE 19. Sequence of flow visualization photographs showing the development of the flow 
instabilities during the spin-up process at C = 7540. The elapsed times after the start of the container 
are (a) 0.5 s, (h) 0.75 s, (c) 1.0 s, and ( d )  1.25 s. 
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FIGURE 20. Plot of dimensional spin-up time versus C showing the kink in the curve corresponding 
to the appearance of a fluid instability. The data from approximately 600 runs were used to construct 
this figure. 

C = 7146, which contains trajectories from two runs, is shown in figure 22. Here the 
trajectories from different runs diverge, wandering wildly, before eventually converging 
on the rigid rotational state. There is now no obvious low-dimensional dynamical 
structure associated with the spin-up process. 

5 .  Conclusions 
A combination of numerical and experimental techniques has been used to uncover 

a rich variety of interesting dynamical behaviour in the spin-up of a fluid in a toroidal 
container. The transient phase between rest and solid-body rotation has been studied 
by varying the final rotation rate, which we have non-dimensionalized and defined as 
C. At small values of C momentum is transported from the walls of the container to 
the fluid by the action of viscous diffusion. The spin-up process is then enhanced by the 
action of secondary flows at higher rates of rotation and the transient flow is 
axisymmetric in both of these regimes. Further, good agreement is found between the 
experimental and numerical results, including the development of inertial oscillations. 

In the next range of rotation rate the flow becomes three-dimensional so that the 
numerical model is no longer valid. This breaking of axisymmetry is accompanied by 
the observation of fronts which eventually break down into transient disordered flow 
with increase in C. We speculate that there are two possible processes involved in the 
formation and break-up of the observed fronts. The first of these is a boundary-layer 
collision process of the type studied theoretically by Cowley et al. (1990). However, the 
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FIGURE 21. Ten velocity time series plots taken at C = 7163 showing transient turbulent phase. 

FIGURE 22. Reconstructed trajectories from two separate runs taken at C = 7146. The data have been 
projected onto the three principal singular vectors calculated by the SVD of the constructed trajectory 
points whose coordinates are time-delayed values of velocity. 
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problem they studied was the physically unrealistic situation where the velocity of the 
boundary was instantaneously set to a large finite value. In our experiments, the 
container is ramped to the final value so that reproducible changes in the parameter C 
can be realized over the entire parameter range. The collision process studied by 
Cowley et al. would occur within the timescale of the initial stages of ramp and so a 
direct comparison cannot be made. Nevertheless, we would expect some features of 
collision processes to be retained and thus the observed front may be a remnant of the 
boundary-layer collision. 

The second source of the wavefronts is the following. The primary flow is 
centrifugally unstable near the inner wall as the circulation decreases outwards there. 
Thus instabilities should appear there but they will require some time to grow. Also 
present is a secondary flow component which would convect any instabilities formed 
near the inner wall circumferentially around the minor radius of the torus. They would 
then be carried across the diameter in the cross-section of the torus from the outer 
towards the inner wall. During this convective phase the instabilities would have time 
to grow so that they would appear as waves on the front and be stretched by the action 
of the strong local shear. In addition, at the upper end of the range of C the inner wall 
shear is much sharper and so the instability can grow much more quickly. Thus in this 
case an instability is observed on both walls with the outer one appearing first. Both 
of these instabilities eventually grow nonlinearly to produce highly disordered flow 
which could be described as transient turbulence. 

We have shown that the spin-up process is well defined and repeatable over a range 
of C that is delimited by a critical event at either end. This is somewhat analogous to 
a sequence of bifurcations in for example the Taylor-Couette system as the Reynolds 
number is varied. The transitions between each of the states is signified by changes in 
the slope of the plots of spin-up time against final rotation rate. However, these 
discontinuities in the slope are small yet distinct features and the overall trend in the 
spin-up time is dominated by secondary flow effects. Perhaps one surprising feature of 
this is that the creation of transient turbulence does not have a marked effect on the 
spin-up process. This is because once the turbulence has appeared it takes some finite 
time to decay and there appears to be an overall balance in the two processes. More 
recently, it has been suggested that the results of a study of the decay of turbulence in 
this system may be compared with analytical scaling arguments (C. Foias, private 
communication). 

Finally we considered the spin-up, process from a ‘dynamical systems’ point of view 
in an attempt to classify the observed dynamical behaviour. The two end points of the 
process, rest and rigid-body rotation, can be considered as distinct points in solution 
space and the transient phase as a trajectory through the space. We have used 
nonlinear signal processing techniques to reconstruct the phase space using single- 
point velocity measurements and shown that the trajectory is unique up to the stage 
when the non-axisymmetric fronts first develop. A saddle then appears in the phase 
space where trajectories which initially follow similar paths diverge from each other so 
that their total paths through phase space are non-unique. This is a definite critical 
event in the transient behaviour and we have attempted to calculate the local 
dimension of the attractor on either side of this critical point. To date, however, we 
have been frustrated by the lack of resolution of the data and noise. Nevertheless this 
approach has clarified the systematic nature of the dynamics of this transient process. 

The authors are grateful to the SERC who supported this research through the 
‘Nonlinear Initiative’ and through and ‘Instant Studentship’ (F. N. M). Keith Long 
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rose to the challenge of manufacturing the high-precision torus with great aplomb. The 
original idea for this project came from a misheard idea of Ciprian Foias, although the 
final version was much closer than any of us suspected. The authors benefitted from 
discussions with S. J. Cowley, C. Foias and S. J. Hogan. 
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